关于【勾股定理怎么算】,勾股定理怎么算角度,今天小编给您分享一下,如果对您有所帮助别忘了关注本站哦。
- 内容导航:
- 1、勾股定理的5种经典证明方法
- 2、勾股定理怎么算
1、勾股定理的5种经典证明方法
勾股定理是几何里面一个非常重要的定理,这个定理也是人类早期发现并证明的重要数学定理之一。人类历史上证明过勾股定理的人有很多,所以勾股定理也有很多别的名字,比如有商高定理、毕达哥拉斯定理、百牛定理等。这其中我觉得百牛定理这个名字的来历最有意思,相传是毕达哥拉斯发现并证明了勾股定理后异常开心,想要好好庆祝一番,于是命令他的学生宰了一百头牛来庆祝这个伟大的发现,于是就有了"百牛定理"这个名字。
勾股定理的发现是人类数学史上非常重要的一步,具有划时代的意义,这也大大的激发了人们想去证明它的动力。历史上有好多名人都在这里留下过他们的智慧,这其中就有伟大的艺术家达芬奇,美国总统加菲尔德等……据统计,现在大概有500多种证明勾股定理的方法。本期,我将分享五种比较经典常见的证明方法给到大家,希望能激发大家学习数学的动力。我非常期待各位小朋友将来也能想到一种自己的证明方法,要是真能在勾股定理中也留下一点和你们相关的印记,那将是人生非常美好的事情。
正文部分
什么是勾股定理?勾股定理指的是在一个直角三角形中,两条直角边的平方和等于斜边的平方。详见如下:
勾股定理逆定理
勾股逆定理指的是如果三角形两边的平方和等于第三边的平方,那么前两边的夹角一定是直角。
常见的勾股数
大家最熟悉的勾股数一定是那句耳熟能详的"勾三股四弦五"。这其中“勾”指的是较短的那条直角边,“股”指的是较长的那条直角边,“弦”指的是斜边。除了“3,4,5”这组勾股数,常见的还有“5,12,13”、“8,15,17(八月十五一家亲)”、“7、24、25”等勾股数,这些勾股数大家也要记好,可以在计算中帮助大家大大的节省时间。
勾股定理虽然只有一句话,一个图,但却有着非常迷人的魅力,让古往今来一个又一个数学爱好者为之如痴如醉,灵感爆发,诞生了很多种既美妙又有趣的证明方法,下面我们来看其中的5种经典的证明方法。
01
外弦图
首先来介绍一种我国古代三国时期数学家赵爽的证明方法——外弦图。毕竟我们是一个非常擅长数学而且喜欢数学的民族,所以这个证明方法自然要放在第一位。另外下面这幅赵爽弦图曾经是第24届国际数学家大会的会标!
02
内弦图
介绍完了外弦图,我们来介绍它的“兄弟”证法——内弦图的证明方法。内弦图证明的核心思想也是一样对大正方形的面积算两次。
03
总统证法
美国总统加菲尔德也曾经给出了勾股定理的一种证明方法,他用两个一样的直角三角形和一个等腰直角三角形拼出了如下的一个直角梯形,通过对直角梯形的面积算两次也证明了勾股定理。这种方法的本质其实就是半个内弦图。
04
《几何原本》证法
欧几里得在《几何原本》里也有对勾股定理进行过证明,用到的主要是分割法和等积变形。核心思想是把大正方形的面积分成了两个小长方形,让它们分别等于两个小正方形的面积。
05
优秀的证法
这是一种非常优秀的证法,也是笔者最喜欢的证法。相传发现这种方法的人只是画了下面两个图,然后很潇洒地告诉周围人:“瞧,勾股定理证明出来了”。
第1期题目解析
公号第2期《第2期——带你搞定牛吃草问题》里和大家分享了一道牛吃草问题和一个看图猜成语,不知道小朋友们有没有去做一下哈,现在这里给出我写的一个解析,大家可以对照一下有没有做对和猜对哈。
牛吃草问题
有一片草地,草每天都会匀速增长,已知这片草地上的草可以供6头牛吃10天,可供4头牛吃20天,如果想5天吃完,需要________头牛。
看图猜成语
黄粱美梦
写在后面的话
本期到这里就要结束了,最后给大家分享一道与勾股定理的问题给大家来练练手,另外还有一道看图猜成语的题目,大家有时间可以自己或者让小朋友来尝试做一下。
欢迎大家也来关注我的微信公众号“张海咚咚咚课堂”和“海咚咚课堂”,微信搜索即可关注,里面还有更多精彩知识等着大家哈!
勾股定理相关题(有一些难度)
看图猜成语
(部分图片来自网络,如有侵权,请联系删除)
2、勾股定理怎么算
勾股定律又称勾股弦定理、勾股定理,是一个基本的几何定理,指在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别a是和b,斜边长度是c,那么可以用数学语言表达:a²+ b² =c² 。
勾股定律又称勾股弦定理、勾股定理,是一个基本的几何定理,指直角三角形的两条直角边长(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。它是数学定理中证明方法最多的定理之一,也是数形结合的纽带之一。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,故称之为勾股定理。
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别a是和b,斜边长度是c,那么可以用数学语言表达:a²+ b² =c² 。勾股定理是余弦定理中的一个特例。
公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。
公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。
外国
远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。
公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。
公元前4世纪,希腊数学家欧几里得在《几何原本》(第Ⅰ卷,命题47)中给出一个证明。
1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了他对勾股定理的一个证法。1940年《毕达哥拉斯命题》出版,收集了367种不同的证法。
本文关键词:房子勾股定理怎么算,楼梯勾股定理怎么算,数学的勾股定理怎么算,勾股定理怎么算角度,直角三角形的勾股定理怎么算。这就是关于《勾股定理怎么算,勾股定理怎么算角度(勾股定理的5种经典证明方法)》的所有内容,希望对您能有所帮助!